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In this paper, we present a method for the solution of those linear transport processes that may be described
by a master equation, such as electron, neutron, and photon transport, and more exotic variants thereof. We
base our algorithm on a Markov process on a Voronoi-Delaunay grid, a nonperiodic lattice which is derived
from a random point process that is chosen to optimally represent certain properties of the medium through
which the transport occurs. Our grid is locally translation and rotation invariant in the mean. We illustrate our
approach by means of a particular example, in which the expectation value of the length of a grid line
corresponds to the local mean free path. In this example, the lattice is a direct representation of the “free path
space” of the medium. Subsequently, transport is defined as simply moving particles from one node to the next,
interactions taking place at each point. We derive the statistical properties of such lattices, describe the limiting
behavior, and show how interactions are incorporated as global coefficients. Two elementary linear transport
problems are discussed: that of free ballistic transport, and the transport of particles through a scattering
medium. We also mention a combination of these two. We discuss the efficiency of our method, showing that
it is much faster than most other methods because the operation count does not scale with the number of
sources. We test our method by focusing on the transport of ionizing radiation through a static medium, and
show that the computed results for the classical test case of an ionization front expanding in a homogeneous
medium agree perfectly with the analytic solution. We finish by illustrating the efficiency and flexibility of our
method with the results of a simulation of the reionization of the large scale structure of the Universe.
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I. INTRODUCTION

A. Grids and errors

The numerical description of physical systems that obey a
differential expression requires the use of a differencing
technique on some sort of grid, mesh, or lattice �except in
rare cases where computational symbolic algebra can be ap-
plied�. Accordingly, the question is not if errors are made,
but rather what kind, and of what severity. In the past, com-
putational lattices were almost always regular and rectangu-
lar, the Cartesian grid being the archetypal example. Analytic
estimates of the corresponding errors are routinely made for
ordinary differential equations on such grids �e.g., �1��; in the
case of partial differential equations, especially those of hy-
drodynamics, the error analysis may even be quite elegant
�see, e.g., �2–4��.

In almost all of these cases, the numerical method may be
chosen in such a way that the errors become small with in-
creasing grid resolution. In practice this is often less than
helpful, due to the steep increase of computational effort
with decreasing mesh size. Moreover, there is one type of
error that does not automatically vanish, namely those effects
that are due to the geometry of the grid. Any intrinsic regu-
larity �such as is introduced by using a Cartesian grid� will,
by Noether’s Theorem, produce spurious conservation laws.
These are sometimes innocuous, but may be rather vicious
under some circumstances. One of the simplest examples is
that of the short characteristics method �5� in radiation trans-
port, in which the numerical diffusion along the axes is neg-
ligible compared to that along the diagonals, resulting in

spiky features along the axes when modeling isotropic out-
flow.

It is this deficiency in particular that we wish to address
here. The solution seems to be obvious: pick an irregular grid
that is locally isotropic in the mean. The question then im-
mediately arises, how to construct such a grid, and especially
how to design its properties �and the corresponding algo-
rithm that describes the physical process�.

In this paper, we present the following procedure for the
construction of a computational grid. First, we represent the
transport medium by a point distribution. Second, these
points serve as nodes in a Delaunay triangulation �6�, a much
used tiling of space described in Sec. III. Third, we specify
the physical operators that act along the Delaunay lines that
connect the points �in our specific example, these operators
constitute a Markov transport process�. The whole procedure
is carried out in such a way that the point distribution �often
called point process in the mathematics literature� optimizes
the solution. By “representing” we might mean a Poisson
process with N points with an intensity np�x�� in 3-space, such
as that for N→� the function np is proportional to the matter
density n. A more general case, which we will fully exploit
below, is a Poisson process with np= f�n�, in which the func-
tion f is designed to optimize certain transport properties of
the algorithm.

We believe that this approach is extremely general and
flexible, and may be used profitably in statistical physics,
hydrodynamics, and even quantum mechanics �cf. �7��. In
this paper, however, we focus only on linear transport prob-
lems, of particles moving through a background medium.
Thus we ignore any nonlinear particle-particle interaction
terms. For definiteness we choose to illustrate it here by
means of one specific example, namely the transport of ra-*Electronic address: ritzerveld@strw.leidenuniv.nl
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diation through a medium that is optically active �scattering,
absorption, ionization�. In that case, the “transport medium”
consists of gas and dust �in other cases the Delaunay lines
might represent, say, communication channels, or gluons
connecting quarks�.

B. Transport processes

The master equation �ME� is the mainstay of stochastic
processes �8� and can be used, in its most general form, to
describe the redistribution of probability in some abstract
space. It relates the rate of change of some density, or distri-
bution function, to one or more gain and loss terms which
describe interactions, in the most general sense. A very suc-
cessful version of the ME is the versatile Boltzmann equa-
tion �BE�, widely used in transport theory �9�. In abstract
form, it reads:

Df = Cf , �1�

in which D is a drift operator and C a collision operator, and
f is a probability density, well-defined on a certain region of
this abstract space.

One can project the operators in Eq. �1� onto the phase
space �, to obtain one particular form of the BE, that can be
used to describe the flow of particles through an active me-
dium with which they might interact. In the absence of ex-
ternal forces,

� �

�t
+ v� · ��� f��� � = � �f��� �

�t
�

coll
, �2�

in which f��� �= f�x� ,v� ,E , t� is the probability density for par-
ticles at position x�, with velocity v� , with an energy E, at time
t. The collision terms on the right-hand side of Eq. �2� can be
written down more explicitly in terms of gain and loss terms,
once the types of interactions are known. In the case of scat-
tering one would obtain:

� �f�x�,v� ,E,t�
�t

�
coll

= �
4�

dv����v� · v��,E�f�x�,v��,E,t�

− f�x�,v� ,E,t��
4�

dv����v� · v��,E� , �3�

in which ��v� ·v�� ,E� is the macroscopic differential scattering
cross section, equivalent to the reciprocal of the local mean
free path. In general, additional particle-particle and particle-
medium interactions can be added to the collision term, each
interaction having its own cross section, contributing to the
total redistribution kernel.

Originally used to describe the behavior of classical
gases, the generalized BE has shown its use in a wide variety
of transport processes, from that of the transport of neutrons
in nuclear reactors, to that of photons in superfluids, of ra-
diation through stellar atmospheres, to even the behavioral
patterns of humans in a large crowd. As such, linear and
nonlinear representations of Eq. �1� have been analyzed rig-
orously �10�, but in almost all cases it is nigh to impossible
to find closed analytic solutions, even more so if one wants
to find time-dependent solutions. It is therefore of the utmost

scientific importance to develop reliable, fast, and flexible
numerical methods, which are able to deal with the com-
plexities of transport theoretic problems.

We stress again that, in this paper, we present our method
only as a tool for solving linear transport problems, such as
the transport of electrons, neutrons, and photons through a
background medium. Extensions to the nonlinear regime are
possible, but we will only hint at that in Sec. III A 3.

C. Numerical methods

Extant numerical transport methods come in a wide vari-
ety of forms, depending on which type of transport process
Eq. �1� represents. In general, the computational techniques
can be split into two categories: deterministic and stochastic
methods. Because of the advent of ever more powerful com-
puters, stochastic methods have been developed which
mimic the behavior of the flow itself. Monte Carlo methods
based on random Markov processes are very popular because
they are conceptually simple and they are very easy to adapt
to parallel processing, considering they are local. Most nota-
bly, the direct simulation Monte Carlo �DSMC� �11�, and
variants thereof, have been widely used to study the dynam-
ics of rarefied gases where the Knudsen number �� /L, a di-
mensionless parameter relating the local mean free path to
the dimension of the volume� is high.

1. Structured lattices

In almost all variants of these stochastic methods, one
constructs a grid, or a lattice, on which one does not only
have to discretize the distribution function �and the differen-
tial operators�, but also the medium properties, and thus the
interaction coefficients. The transport can henceforth be
solved by, for example, tracing rays �radiation transport� or
transporting fluxes �hydrosolvers� from one grid cell to the
next. Although a regular mesh might seem the most obvious
choice, it is known to cause several problems, inherent to its
structure. If the medium is highly inhomogeneous, the global
resolution of a stiff rectangular mesh has to be high enough
to be able to sample the highest Fourier component of the
density spectrum. This, of course, results in a high redun-
dancy of grid cells in fairly homogeneous regions. This prob-
lem has been partly solved by the introduction of adaptive
mesh refinement �AMR� �12,13�, in which the grid refine-
ment follows some criterion, such as the gradient in the den-
sity. Even refined grids, though, suffer from another problem
all regular grids have: they are known to break physical sym-
metries. Because the cells are congruent, albeit not of the
same size, the rotation group of the lattice is not isomorphic
to SO�d�, but to some discrete subgroup thereof. Also, the
fixed widths of the cells impose a non-physical constraint,
and are known to break translational symmetry. Several dif-
ferent communities have described these shortcomings in
different forms. DSMC methods require the mesh size to be
much smaller than the local mean free path, in order to ac-
curately capture the flow features. When the density of the
gas locally becomes very high, the computational cost will
increase tremendously, imposing a difficulty for extending
DSMC methods to the continuum limit, where the Knudsen
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number � /L→0. The lattice Boltzmann �LB� community
have shown �14� that the discrete rotation group of a rectan-
gular lattice does not have enough symmetry to obtain
Naviér Stokes-like equations in the limit, and they had to
resort to hexagonal lattices in two-dimensional �2D� and
multispeed models in 3D, in the absence of platonic solids
that at the same time have a large enough symmetry group
and tessellate space �15�. Moreover, the regular lattices are
known to break Galilean symmetry �16�; and, the fixed cell-
widths impose constraint on the Reynolds number the
method can resolve. In the lattice gauge community, it has
been known for quite some time that regular �Wilson� lattices
break Poincaré symmetry �7�. Supersymmetry closes on the
Poincaré group by necessity, and therefore has difficulty be-
ing defined on regular lattices �17�. Moreover, because the
lattices are invariant under translations of one or more cell
widths, or rotations of � /2 �or � /3 when one uses triangular
grids� with respect to one of the axes, spurious invariants are
introduced.

In summary, the choice of a regular grid which has noth-
ing to do with the underlying physical problem results in the
introduction of unphysical conserved quantities, and the
breaking of several very physical symmetries.

2. Random lattices

Various different communities have independently found
an answer to this mesh-related problem. Dispense with the
regular grids altogether, and introduce random lattices,
which will be described in more detail later on in this paper.
In those fields of physics, where symmetries are most impor-
tant, the lattices were used first. General relativity was dis-
cretized onto a simplicial lattice �18�, even resulting in quan-
tum gravity theories, and lattice gauge theories were defined
on similar random lattices �7�. Their use was hinted at in
cellular automaton fluids �19�, but was overlooked as a pos-
sibility to solve the dichotomy between symmetric and
space-filling lattices in LB solvers �for a review on unstruc-
tured grids in LB methods, cf. �20��. Voronoi lattices were
also recognized to be of use in the field of dissipative particle
dynamics �21,22�. These random lattices still have a prob-
lem, though. In most cases, a Poisson point process lies at
their basis, a result of which is that the average point-to-point
distance is homogeneously of the order of np

−1/d, in which np
is the density of points, and d is the dimension. For an inho-
mogeneous medium distribution this length scale does not
have an immediate correspondence to the length scales of the
physical problem, and, as said, impose constraints on the
physical parameters �i.e., the Reynolds number for LB meth-
ods and the Knudsen for DSMC methods� to be resolved.

D. Outline

In this paper, we describe a linear transport method which
dispenses with the unphysical regular meshes, and uses as a
basis random lattices that are locally isotropic in the mean.
Moreover, the point distribution which defines the lattice rep-
resents the medium distribution, from which it follows that
the length scales introduced �e.g., the mean Delaunay edge
length� are not irrelevant, or just a step in a refinement se-

quence, but have true physical meaning. The method we will
describe can be used more generally to solve almost all MEs
of type Eq. �1�, and can be used as such, but in this paper we
will specifically focus on linear transport processes of par-
ticles being transported through a �possibly dynamically
evolving� background medium, with which they interact.
Nonlinear particle-particle interactions are ignored, except
through feedback from the background medium itself. Thus
the method as described in this paper can be used to model
transport processes such as electron, neutron, or photon
transport. We will end this paper by focusing on one particu-
lar example of such particle transport, namely that of photon
transport, and we will compare how an implementation of
our method compares to analytical solutions. Hereafter, we
show its flexibility in a simulation of the epoch of reioniza-
tion in the early Universe, in which the first generation of
stars cause a phase transition of hydrogen gas in the Uni-
verse, namely from neutral to almost fully ionized.

II. STOCHASTIC METHODS

A robust approach to numerically solving linear transport
problems is the use of Monte Carlo methods, in which the
solution for a macroscopic system is obtained by randomly
sampling microscopic interactions. Because our method
bears many similarities to standard stochastic methods, we
proceed by first pointing out the essentials, after which we
will describe our method.

A. Monte Carlo transport methods

In very general terms, stochastic transport methods are set
up to solve Eq. �1� as follows. The BE is split such that the
drift term Df and the collision term Cf can be treated sepa-
rately, or subsequently. Hereto, one introduces a discrete
time step �t and discretizes the abstract �position� space into
cells using enough resolution, such that one can assume spa-
tial homogeneity within each cell i. The collision term is
solved for by using a recipe for the particle-particle or
particle-medium interactions within each cell, and this term
can be used to locally update f t�xi�. That local version of
f t+�t�xi� is then advected to the next cell via some recipe
depending on the local velocity field and a possible external
field.

The stochastic, or Monte Carlo, character is introduced by
defining the way the collisions or interactions are solved for
in each cell, at each subsequent time step. Hereto, one de-
fines a stochastic game transforming the local state vector in
each cell to a newly updated one, the statistical parameters of
which can be described by the local cross section coeffi-
cients. How this is incorporated depends on the type of trans-
port process. In rarefied gas dynamics, for example, DSMC
methods solve for local collisions by defining cross sections
based on the number and type of particles present in each
cell. As such, the local interaction coefficients are deter-
mined by the transported particles themselves. As said, we
will concentrate in this paper on linear transport problems, in
which the transported particles only interact with a medium,
by which the interaction coefficients are determined by the
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background medium properties only. Note that of course the
medium itself might dynamically evolve, by which the cross
section coefficients might locally change with time.

B. Particle-medium interactions

Assuming for now that the medium through which the
particles are transported is static, we can elaborate on the
general setup as described in the previous section. The stan-
dard approach to transporting neutrons, electron, and photons
through such a �possibly active� medium can be described as
follows. First, one samples the whole domain onto a rectan-
gular �possibly curvilinear� grid, with enough resolution to
consider the medium properties �e.g., the density ni� within
each cell as constant. Given one or more sources inside or
outside of the domain, one determines via some recipe the
number or distribution of particles of a certain type originat-
ing from one or more grid cells, moving into certain direc-
tions. This determines our initial condition f�x�i ,n� , t=0� at
each grid cell i.

One decouples the drift from the collision part of the
transport equation by advecting the particles, or particle dis-
tribution f�x�i ,n� , t=0�, from one grid cell i to the next i� in
the direction of the particles velocity n� during some time �t,
whereafter one determines what happens to the particles de-
pending on the medium properties within the new grid cell
i�. The local medium properties are characterized by the lo-
cal cross sections for the various interactions. These can be
quite diverse, ranging from scattering to pure absorption.
Each of this set of interactions 	j
 has a unique coefficient
	 j�x�i�, which is assumed to be constant throughout each cell.

More specifically, given a total interaction coefficient
	�x�i�=� j	

j�x�i�, one can show that the chance of particles not
interacting with the medium within that cell is determined by
the exponential distribution function

p�s� = 	�x�i�e−	�x�i�s, �4�

in which one can define s as the length of the path of the
particles from one cell to the next, or the width of one cell.
One can randomly sample the probability function Eq. �4�
using a rejection method or a direct inversion method �1�,
and determine whether or not particles will interact. What
interaction will take place depends on the relative coeffi-
cients 	 j�x�i� /	�x�i�. What happens as a result of an interaction
depends on the type of interaction. When a particle is ab-
sorbed, it is subtracted from the total particle distribution,
and when it is scattered, it will be redistributed along a dif-
ferent direction, and advected together with the surviving
particles in the next time step. The moments of the distribu-
tion function in Eq. �4� are

�sk
 = �
0

�

skp�s�ds = k!/	k�x�i� = k!��x�i�k, �5�

in which ��x�i� is the local mean free path.
Thus, effectively, Monte Carlo methods for the linear

transport of particles through a medium move particles from

one interaction to the next, along trajectories which have as
an average length the local mean free path, which is deter-
mined by the medium properties within each grid cell.

III. METHOD DESCRIPTION

In the Introduction, we extensively discussed the
symmetry-breaking induced by the use of regular lattices,
and how this can be resolved by the use of random lattices.
In this section, we describe how we combine these random
lattices together with the basic ideas of Monte Carlo trans-
port methods to create a method which solves linear trans-
port equations on an adaptive random lattice.

A. Lattice construction

We will now proceed with describing how we construct
our adaptive, or Lagrangian mesh, along which we will
transport the particles. Note that, although we will give ex-
amples in 2D, the mesh construction method we will de-
scribe in the following is generally applicable in
d-dimensional space for any d
1.

1. Random lattices

Standard random lattices are constructed on the basis of
Poisson point processes �, which can be defined �6� as the
probability

� = Pr„N�A� = x… =
�np�A��e−np�A�x

x!
�6�

to find x=0,1 ,2 , . . . points in any subset A�S=Rd. The ex-
pectation value for Eq. �6� is np�A�, in which np is the point
intensity, which is constant within A. This means that within
every box of equal volume, the average number of points is
equal. An example of this point process in 2D can be seen in
Fig. 1 �left�. The important property of the Poisson point
process is that it can be shown �6� to be translation and
rotation invariant, i.e., homogeneous and isotropic. This
makes it an ideal starting point to construct a lattice which
retains these basic properties.

To our knowledge, the least restrictive way to construct a
lattice which tessellates space, and which does not break this
rotational symmetry, is the Delaunay triangulation �23�.
Given a stationary point process � of nuclei 	xi
 in Rd, the
Voronoi tessellation �24� is defined as V���= 	Ci
 in which

Ci = 	y � Rd:�xi − y� � �xj − y� " xj � xi
 . �7�

That is to say, the Voronoi cell Ci is the set of all points
closer to xi than all other points. If two Voronoi cells Ci and
Cj have a common �d−1�-facet �in 2D an edge, in 3D a wall,
etc.�, they are said to be contiguous to each other. By joining
all the nuclei whose cells are contiguous, we obtain the De-
launay triangulation, which is a set of simplices and which
is, by definition, dual to the Voronoi tessellation. An example
of a Voronoi and Delaunay tessellation based on a Poisson
point process is depicted in Fig. 1.

There are several things to note about this random lattice.
First, the recipe used to construct the Voronoi tessellation,
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and subsequently the Delaunay lattice, is solely based on an
isotropic distance recipe �cf. Eq. �7��. This fact ensures the
inheritance of rotational symmetry from the point process
onto the lattice. Second, we are fortunate that specifically for
Poisson-Voronoi tessellations there are several analytically
derived properties available �6�. For example, the average
number of edges of a Voronoi cell in 2D, and thus the ex-
pected number of Delaunay lines meeting at one vertex, is
equal to 6. Thus, on average, the Poisson-Delaunay lattice is
equivalent to the hexagonal lattice used in LB FHP models
�14�. In 3D, however, the number of Delaunay lines meeting
at one vertex can be derived to be �48�2 /35�+2�15.54. The
fact that this number is not an even integer is a direct con-
sequence of the fact that there is no tessellating Platonic
solid in 3D which retains enough rotational symmetry, which
as discussed has been known to be a problem in, for ex-
ample, the LB community. Of course, every individual
Voronoi cell will almost always be asymmetric, but on aver-
age it is symmetric. Thus we have defined a random lattice
which tessellates every dimension d
1, and is rotationally
and translationally symmetric, which makes it ideal for use
within those parts of physics where these physical symme-
tries are absolutely needed. Moreover, spurious invariants
associated with the breaking of these symmetries are pre-
vented. As such, these random lattices have been used in the
fluid dynamics �21,22�, lattice gauge �7�, general relativity
�18�, and SUSY �17� communities.

2. Lagrangian random lattices

Although spurious invariant and symmetry breakings as-
sociated with rotational and translational invariance are pre-
vented by the use of random lattices, one drawback that still
remains is the introduction of an unphysical length scale,
determined by the average point to point distance, or the
average Delaunay line length �L
. For Delaunay lattices
based on a Poisson point process, the kth order expectation
value for the line length L can be derived analytically as �6�

�Lk
 = 
�k,d�np
−k/d, �8�

in which 
�k ,d� is some geometrical constant for each pair of
the value of k and the dimension d. Two often used values of
this constant are


�1,2� =
32

9�
� 1.132, �9�


�1,3� =
1715

2304
� 3

4�
�1/3

��1

3
� � 1.237. �10�

The average Delaunay line length in 3D, for example, is
therefore

�L
 = 
�1,3�np
−1/3 � 1.237np

−1/3. �11�

Although this line length does not have a delta function as a
probability function, as in the case of a regular mesh in
which the delta function peaks at a length of one cell width,
but a certain spread �2= �L2
− �L
2�np

−2/3, it does still have a
global first order expectation value that scales with np

−1/d,
which is a constant once the Poisson point density np has
been chosen.

As already discussed, these fixed values cause problems
when the medium distribution itself is not homogeneous, as
they might under-resolve high density regions, and impose
constraints on parameters like the Knudsen and Reynolds
numbers. More generally speaking, it causes problems in re-
gions where the mean free path is shorter than this expecta-
tion value.

This problem has been resolved somewhat for regular
meshes by introducing AMR, in which the mesh refines itself
according to some predefined criterion, often based on the
gradient of the pressure or density. Because here we are con-
sidering a statistical method, it is justifiably better to choose
as an adaption parameter �a function of� the density of the
medium. Similar efforts have been made with respect to
structured grids, which have one basic congruent cell shape
as a basis, in the DSMC community �25,26�, in which one
wanted to make sure that the local cell sizes at least resolve
the local mean free path. In this case, we do not have a
regular mesh as a basis and proceed by trying to define a
point process which does refine based on the local medium
density.

To accomplish this, we discard the Poisson point process,
which is the usual basis for random lattices. Instead, we de-
fine a point distribution, which is a convolution of a homo-

FIG. 1. �Left� Result of a Poisson point process. �Middle� The resultant Voronoi diagram. �Right� The resultant Delaunay lattice.
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geneous Poisson point process � and a function of the pos-
sibly inhomogeneous medium density distribution n�x��,
symbolically written as

np�x�� = � � f„n�x��… . �12�

The only constraint is the maximum number of points, or
resolution, N available for the simulation. Equation �12�
amounts to nothing more than randomly sampling the func-
tion f(n�x��) using a direct inversion of rejection method. If
the medium distribution n�x�� is inhomogeneous, one expects
the points distribution np�x�� to be inhomogeneous too, mim-
icking the medium; but, as long as our number of points N is
high enough, we can always zoom in far enough that locally
the medium distribution is homogeneous, and the point dis-
tribution Poissonian. Thus, locally, the point distribution de-
fined by Eq. �12� retains the rotational and translational sym-
metries associated with Poisson point processes.

Up until now, we have not specified the exact form of the
correlation function f�x� in Eq. �12�. We will discuss the
details hereof in the next section. For now, we will give an
example, by choosing f�x�=x, and plotting the resultant point
distributions, for two different medium distributions. We re-
fer to Fig. 2, in which is plotted the point distributions for a
homogeneous �top� and an inhomogeneous �bottom� me-
dium.

3. The correlation function

What do we choose for the correlation function f�x�? Be-
cause we introduced this function to ensure adaptation of the
point distribution to the medium distribution, the obvious
conclusion is that we need f�x� to be a monotonically in-
creasing function in x, by which the average point-to-point
distances will actually be shorter in denser regions.

In light of what we discussed about Monte Carlo methods
transporting particles along trajectories which have as an av-
erage length one mean free path, we can choose one particu-
lar form of f�x� which makes the resultant Delaunay line
lengths have a very physical meaning.

From basic transfer theory, we know that the local mean
free path relates to local medium density in the following
way �valid for every dimension d
1�:

��x�� =
1

n�x���
, �13�

in which �=� j� j is the total cross section, possibly consist-
ing of many different interaction cross sections � j, each hav-
ing its own mean free path � j =1/n�x��� j. Because the mean
free path is a statistical length, it scales in a different way
with the medium density than the average Delaunay line
length, which has an extra dimension dependence �cf. Eq.
�8��. From that, we can easily conclude that if we choose our
point distribution to sample the dth power of the density, i.e.,
f�x��xd, or, more specifically,

np�x�� = � � nd�x�� , �14�

the length of a Delaunay line �L
�x�� between two points will
scale linearly with the local mean free path of the medium
��x�� via a constant c. That is

�L
�x�� = c��x�� . �15�

Thus, because we choose the point distribution to conform to
the density profile of the medium according to Eq. �14�, the
average Delaunay line length and the mean free path have
the same n−1 dependence, by which Eq. �15� is a global
relation with a global constant c.

There are two things to note. First, the medium, and thus
the medium density distribution, might evolve. In that case
the lattice, which is Lagrangian by definition of Eq. �14�, will
evolve with it. In most relevant cases, the transport of par-
ticles through a medium is studied with respect to static me-
dia, but for several cases, such as radiation hydrodynamics, it
is worthwhile to keep in mind that the medium density n�x��,
and thus the point density np�x��, can change with time, ac-
cording to what a separate hydrosolver provides us with.
This is also how we see a possible extension to the nonlinear
transport regime of, for example, hydrodynamics. As in the
DSMC method, we could define a linear Monte Carlo-like
transport process through a background medium, now con-
sisting of the particles themselves; in this case, however, the
background medium, i.e., the particles themselves, cannot be
considered static. As such, the random lattice needs to be
updated very frequently, which is a costly, and intricate task.

FIG. 2. �Top� Point distribution representing a homogeneous
medium; and bottom: point distribution representing a clumpy
medium.
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Second, one can choose the correlation function to be any
monotonically increasing function different from the one in
Eq. �14�, but in that case the global constant c would change
into a locally varying function c�x��. For example, if we
choose f�x��xe, where e
0, that varying function would be
c�x���n�d−e�/d.

B. Lattice properties

In the previous section, we described how we construct
the adaptive random lattices based on the medium density
distribution. Before we set out to define the way one can
transport particles on this lattice, we need to discuss the ex-
act statistical properties of the lattice, and the errors associ-
ated with its stochastic nature.

1. Distributional equivalence

The linear correlation of Eq. �15� can be taken one step
further, by relating Eq. �5� to Eq. �8�, and recognizing that,
by choosing a correlation function f�x��xd, not only the first
order moment, but all kth moments of the exponential distri-
bution in Eq. �4� will scale linearly with the kth order expec-
tation of the Delaunay line length, i.e.,

�Lk
�x�� = c�k��k�x�� , �16�

in which c�k� is still a global constant, but one that now
depends on the order k. This similarity in statistical proper-
ties is, of course, not very surprising, because the interval
between two events, or the distance between two points, in
the Poisson point process in Eq. �6� has an exponential dis-
tribution p�x�=np�A�enp�A�x equivalent to that of the path
length between two events in Eq. �4�. It is to be expected that
the distribution function for the average distance, or De-
launay line lengths between two of those points, follows a
similar distribution, with some modifications because of the
dimension of space. The mean free path statistical length is
one-dimensional always, not depending on dimension, so by
choosing the correlation Eq. �14� we remove the dimensional
dependence of the expectation values Eq. �8�, by which the
path lengths of particles and the average lattice line lengths
are distributed similarly.

2. Length sampling

We described how to construct a lattice, which is homo-
geneous and isotropic locally, and which adapts to the me-
dium properties. Moreover, we showed that, by choosing a
smart correlation function, the lattice becomes a direct rep-
resentation of the “free path space” of the particles. That is,
locally, the Delaunay line lengths have the same distribu-
tional properties, i.e., the same kth order moments, as the
path lengths until interaction of the particles.

Thus the Delaunay line originating from one point in the
medium has distributional properties �kth order moments�
which all scale linearly with the distributional properties of
the path lengths originating from that point. Stated differ-
ently, the variance of the Poisson process is now not associ-
ated with noise, but is exactly the variance of the free path of
the particle.

Given a number of points, or resolution, N, we construct
one instance of the ensemble of the point distribution, and
the free paths are accurately sampled at each one of those
points. This could cause inaccuracies, once the medium be-
tween two points in not locally homogeneous, by which it
does not have enough sampling points. Thus we need to
impose as a sampling condition, that in the vicinity of each
point �or, more accurately, within each Voronoi cell�, the me-
dium can be considered homogeneous, a condition needed in
almost every numerical method. Symbolically, we need

1
n�x��

�n�x��

�x �
1

�L
 .

This can be dealt with in two ways. First, one can increase
the number of points N, by which the global parameters c�k�
decrease correspondingly, until the condition is satisfied. It is
obvious that, when N→�, the density field is sampled con-
tinuously, and the result is exact. Second, when the available
resolution is less than needed, we can construct several in-
stances of the same point distribution, and overlay them af-
terwards. This is allowed because the expontential distribu-
tion, on which the Poisson point process is based, is
memoryless, by which the individual instances are indepen-
dent. Note that the sampling condition is reached faster by
choosing a correlation function as in Eq. �14�.

3. Angular sampling

Another variable which has to be sampled accurately is
the number of directions a particle can propagate into at each
point. As said, the average number of directions at each point
is fixed �6 and 15.54, in 2D and 3D, respectively�, and will
not increase, when the resolution or the number of instances
increases. We have to take this into account when we design
a transport algorithm, in which we want to conserve momen-
tum at each point. Moment conservation can be imposed as
we will show in the next section.

If we construct many instances of the ensemble of point
distributions, the directions of the lines will differ for each
instance, and, eventually, the continuous rotation group
SO�d� will be sampled continuously. We can, however, apply
the ergodic principle, and state that it is equivalent to replace
the ensemble average by a volume average. The number of
directions within a volume, containing N points, scales as
O�N�. Thus within a certain locally homogeneous medium,
the number of points, and henceforth the number of lines,
has to be large enough to accurately sample the unit sphere.
This amounts to nothing different to stating that a random
lattice is isotropic.

Thus, we can conclude that, when the number of points
within a certain small region will increase towards infinity,
the number of directions will follow that trend, and the an-
gular sampling will become infinitely precise.

C. Transport

The Lagrangian random lattice, described in the previous
section, is a direct representation of the “free path space” of
the medium. As such, the stochastic element of the linear
transport of particles on a fixed, deterministic grid in regular
Monte Carlo methods, is moved to the simple deterministic
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transport of particles on a lattice, which now has the stochas-
tic properties. Moreover, we can dispense with the regular
grid or the underlying medium altogether because all the
information needed for the transport of particles has been
translated to the lattice, by which the transport of particles
through a medium has been translated to the transport, or
percolation, of particles on the graph consisting of the lattice
lines.

In the following, we will describe how we can use this
lattice as a basis for transporting particles, depending on
what kind of process we would like to model. As an ex-
ample, we will use the two elementary linear transport pro-
cesses, ballistic transport �possibly with an additional ab-
sorption term� and transport through a scattering medium,
and combinations hereof.

1. Ballistic transport

We will commence with describing how we can transport
particles along the lattice for a medium in which the scatter-
ing cross section is negligible. Because, in this case, we
transport particles which have a predetermined momentum,
it is of utmost importance to define what we do at each grid
point to ensure momentum conservation, and prevent nu-
merical diffusion.

Because our method works in such a way that the line
lengths correlate linearly with the mean free paths, we as-
sume that the homogeneously distributed medium is absorp-
tive, and that the associated cross section �abs is the only
contribution to the total cross section. Henceforth, we obtain
a lattice which is similar to the Delaunay graph in Fig. 2,
bottom.

We define one point as a source of particles, sending them
out along one of the lines. The particles move along the line,
until they come upon the next point. They have moved along
a line, which correlates linearly with the mean free path via a
constant factor cabs. We can exactly evaluate the value of this
factor, given in Eqs. �8� and �14�, as

cabs = ��d,N,D��abs, �17�

in which ��d ,N ,D� is some constant depending on the choice
of dimension d, the number of points N, and of the size of
the domain D. Note that each other type of particle-medium
interaction j would have a coefficient cj determined via a
relation similar to that in Eq. �17�.

Ideally, one would want all cj =1, but, almost always, the
resolution N will result in a coefficient larger than unity, in
which case the line length is larger than the local mean free
path, or smaller than unity, in which case it is the other way
around. This can be taken care of by defining how the inter-
action, in this case absorption, is accounted for at each point.

Hereto, we define the incoming number of particles, or
intensity, as Iin, and determine the outgoing intensity as

Iout = Iine
−cj , �18�

which is equivalent to the familiar I��x�= I0e−x/�, which can
be derived from Eq. �4�. Note that, with cj being a global
constant, e−cj is a global constant too, which can be deter-
mined a priori, via Eq. �17�. In some cases, when the reso-

lution N is high, and thus the coefficients cj small, it might
be useful to approximate e−cj ��1−cj�.

Locally the number of particles absorbed can be exactly
evaluated as

Iabs = Iin�1 − e−cj� , �19�

which ensures that this method conserves particles exactly.
The remaining particles Iout have to be sent out along one

of the lines emanating from this point. The directions we
choose depends on whether we want to conserve momentum,
or if the interaction was with a scattering medium, in which
case we want to distribute the particles isotropically. In the
present case, we need to ensure momentum conservation, by
which the we have to choose as an outgoing line one which
is in the same direction as the incoming one.

As we already discussed in the previous section, the lines
only sample the unit sphere on average, and although the
Voronoi cells are cylindrically symmetric, on average, with
respect to every incoming Delaunay line, every one particu-
lar cell will deviate from that. This has as a result, that al-
most always, there is no outgoing line in the same direction
as the incoming one. Thus particles are deflected from their
original direction by the irregularity of the grid. This can be
viewed as the introduction of space-dependent inertia forces,
and it is very important to keep track of these, especially in
the nonlinear regime �27,28�, which we do not consider in
this paper.

We can resolve this by doing the following. We refer to
Fig. 3, which is an example in 2D space. In this figure, the
dashed line is the line along which momentum would be
conserved. Instead, if we now choose the “nearest” line II as
the outgoing line, in which nearest can be defined in several
ways, the most intuitive being that line for which the inner
product with the dashed line is largest, it can be shown that
momentum is conserved on average, which immediately fol-
lows from the fact that the Voronoi cell is axisymmetric with
respect to every incoming Delaunay line. However, from a
numerical implementational point of view, it is more elegant
to split up the two particles and distribute one of them along
line II and the other along line III, being the next to most
straightforward path. More generally, if the transported quan-
tity is a continuous entity, we have found it is most efficient
to split this quantity into d equal parts, in which d is the
dimension of our computational domain, and distribute each
of these parts along the d most straightforward paths. Be-

FIG. 3. Example of a number of Delaunay lines meeting at a
node. Incoming particles �along line I� interact with the medium at
the node, and the remaining particles should continue along the
dashed line to conserve momentum. Choosing lines II and III as
outgoing ensures conservation of momentum, on average.

JELLE RITZERVELD AND VINCENT ICKE PHYSICAL REVIEW E 74, 026704 �2006�

026704-8



cause by definition, the Poisson-Voronoi cells are axisym-
metric with respect to every associated Delaunay line in ev-
ery dimension d
2, we know that a similarly modified set
of rules will ensure conservation of momentum.

To demonstrate conservation of momentum, we con-
structed a 2D random lattice of a Poisson point process with
a relative resolution of N=5�104 points, which is sufficient
to show the trends and is still coarse enough to clearly show
noise. Next, we define one point as a source of particles, each
emitted with the same momentum vector. If the particles
were defined to be photons, this source could, for example,
be called a laser beam. The rules at each site are chosen such
that the two most straightforward paths with respect to this
momentum vector are chosen, and that the incident package
of particles are split in two and continue along these two
lines. We follow the particles until they hit the absorbing
boundary. The result is plotted in the bottom half of Fig. 4, in
which we plotted the logarithm of the number of particles at
each vertex, given that the source emits a high number of
particles.

One immediately sees that, on average, the resultant mo-
mentum vector is in the original direction �by the symmetry

properties of the Delaunay lattice �6��, but that there is some
inherent noise associated with the use of these random lat-
tices. Fortunately, one can prove that this noise vanishes in
the limit of N→�, by recognizing that in d-dimensional
space the propagation of a particle on a lattice with this set of
rules is equivalent to the process of an anisotropic random
walk on a graph. An exact mathematical derivation is given
in the Appendix, and we give a simplified version here.

Defining a signal S� �L
n as the �average� distance trav-
eled after n steps, and realizing that for an anisotropic ran-
dom walk we have a noise N� �L
�n, we obtain a signal-to-
noise ratio S /N�n1/2 �which is of course similar to the
famous inverse square root law of Monte Carlo methods�.
This is why the beam in Fig. 4 does not diverge. Given a
particle location x along the momentum vector at a distance
s from the source, we know that the average number of steps
n for a particle to reach s scales as n�s / �L
 in which �L

�N−1/d. From this, we can conclude that the signal-to-noise
ratio at a distance s from the source scales as

S
N � N1/2d. �20�

Thus, in the limit of N→�, momentum is conserved exactly,
not just on average. In other words, the width of the beam
will shrink to zero. Note that, when N increases, the interac-
tion coefficients 	cj
 will decrease.

Thus we have shown that choosing this transport recipe
for ballistic transport will not only conserve momentum on
average, but it does also deal with the coarse angular sam-
pling at each point of the lattice, ensuring that any numerical
diffusion will be minimal. Moreover, we have shown that
this artificial widening of the beam will go to zero for infinite
resolution.

2. Transport through scattering media

In the previous section we discussed how to do transport
of particles through a medium for which the interaction con-
serves momentum and does not change the original momen-
tum vectors of the particles. It is also possible that one of the
interactions 	cj
 can also influence the vectorial properties of
the particles, for example, when the transport is through a
scattering medium.

Without loss of generality, we assume a similar homoge-
neous medium as before, but now, without absorptive prop-
erties, but with an extra interaction coefficient, �scat, which
accounts for the scattering properties of the medium. In this
case, the method for transportation is rather similar as in the
previous section, in that we propagate the scattered particles
Iout= Iine

−cscat along the d most straightforward paths. What
differs is that the retained particles Iret= Iin�1−e−cscat� will
now be redistributed isotropically. Hereto, one can choose to
propagate an equal section along every one Delaunay line.
Of course, the angular sampling is not perfect, but similar
considerations as made in Sec. III B 3 will ensure angular
resolution.

An example of one such experiment is depicted in Fig. 4
�top�, in which we define several point is a small central
region as sources, and for which we let the particles propa-

FIG. 4. �Color online� The result of two simple tests on a 2D
Poisson-Delaunay random lattice with N=5�104 points. Both are
logarithmic plots of the number of particles at each site. �Top� Il-
lustration of a scattering transport process; and �bottom�: illustration
of the conservation of momentum by means of the transport of
particles with constant momentum vectors.
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gate along the lattice according to the rules described above.
We take several points as a source in this case because this
will ensure that we have many different original directions.
Note that the result is very isotropic, as is to be expected of
this random lattice. Moreover, the result exactly depicts the
noise associated with the finite angular sampling, and thus
the finite amount of points.

3. General interactions

The particle-medium interaction can consist of many dif-
ferent types, each one having its own contribution to the
right side of Eq. �1�. Each one of these interactions has its
own cross section � j, and its own corresponding linear cor-
relation coefficient cj. Note, however, that the conversion
factor ��d ,N ,D� in Eq. �17� is the same for all interactions,
given one choice of d, N, and D.

The total interaction factor C=� jcj determines what fac-
tor of the incoming particles interacts, in one way or the
other, Iout= Iine

−C. Every single interaction in the set 	cj
 has

its own contribution
cj

C e−C. When our resolution is conve-
niently high enough, and thus our factors 	cj
 correspond-
ingly small, we can approximate the total factor of the par-
ticles that interact, as �1−e−C��C, by which one can
conclude that every interaction retains a factor cj of the in-
coming particles. This last approximation can be imple-
mented more efficiently codewise.

What happens to particles, when they interact, of course
depends on the type of interaction, and the type of transport
process in general. Particles can be redistributed isotropi-
cally, and continue on through the medium, or they can in-
fluence the medium, by heating, ionization, or something
similar. They might even be reemitted as different particles.
All these types of interactions can be implemented very eas-
ily, and the feedback of the particles on the medium is de-
fined straightforwardly. One might even have multiple spe-
cies of particles, in which case there would be a cross section
� j for each type of particle, and the set of factors cj would
change into a matrix, which could include the transformation
of one particle into the other.

We conclude by noting that one needs to aim at having
enough resolution to ensure cj �1. In cases where scattering
can be neglected, the solution based on Eq. �18� would still
be exact, as we could not resolve the space between the
points anyway, but when wanting to incorporate scattering,
one might not accurately resolve the diffusion coefficient,
when cscat�1.

D. Time stepping

Up until now, we have not elaborated on what we define
as a time step. As in linear Monte Carlo methods, how to
define the time step depends largely on the transport problem
at hand. We can mostly define two distinct cases: �a� the
interaction dominated limit �� /L�1�, and �b� the free
streaming limit �� /L
1�.

The first case is what is mostly encountered in linear
transport problems. Here, the mean free paths for the par-
ticles are so small compared to the size of the domain that we

know the particle will be absorbed somewhere within the
domain. Given that the speed of the particles is very high,
one can, for each time step, let the particles that are emitted
in that interval move along the lattice, moving from one
interaction point to the next, until they are annihilated. The
time steps do have to be chosen such that one can accurately
sample time dependent source functions, or such that, when
absorption is followed by ionization �cf. Sec. IV C�, one can
accurately follow the ionization front. Equilibrium solutions
can be found, if they exist, by having a constant number of
particles being emitted at each time step, that will exactly
compensate for the number of particles that are absorbed, or
leave the computational domain.

The second case is not very interesting from a particle-
medium interaction point of view because the densities and
cross sections are of such form that no interactions are ex-
pected to occur. Thus the particles can stream freely through
quasivacuous space. In this case, one may be interested in
following the particles’ trajectories, and the time steps are
then dictated by the size of the domain divided by the speed
of the particles.

An interesting, albeit a bit artificial, intermediate case is
the one described in Sec. III C 2. In this case of pure scatter-
ing, the particles are not expected to be annihilated. If we
would not stop the particles at one point, they would even-
tually leave the domain. Thus if we want to, for example,
accurately follow the spherical wave front around a point
source in a homogeneous, scattering medium, as it expands
with time according to the familiar Gaussian diffusion pro-
files, we need to keep a clock for each particle, such that it
does not take more mean free path steps as is allowed by, for
example, its maximum speed.

It is clear that the relevant time step criteria depend
greatly on what it is one is trying to solve for. In each case,
however, one can define the relevant time stepping unam-
biguously. Most linear transport problems we are interested
in, including the one discussed in Sec. IV C, will be of type
A.

E. 3D and beyond

Because it may not seem obvious how our method is trivi-
ally extendible to Rd, given all the 2D examples we gave, we
will explicitly state how this extension is automatically
achieved by the lattice construction procedures we gave.

First, the recipe for constructing our adaptive point pro-
cess using Eq. �14� is applicable and valid in general dimen-
sional space. Second, the procedure for constructing the De-
launay triangulation, and the corresponding recipe for the
Voronoi tessellation Eq. �7�, can be used and implemented
efficiently in every Rd �6�. Because we chose a correlation
function that includes the dimension of space np�nd, we
made sure that the linear relation between all line lengths of
the resultant lattice and the local mean free paths are valid in
every dimension, cf. Eq. �16�. Thus, we have obtained an
adaptive random lattice that adapts to the medium in exactly
the same for every Rd.

As we have already pointed out, the resultant transport
process is nothing more than a walk from on interaction

JELLE RITZERVELD AND VINCENT ICKE PHYSICAL REVIEW E 74, 026704 �2006�

026704-10



event to the next �as it is in Monte Carlo methods�, or, alter-
natively, a walk from one vertex to the next along a
d-dimensional Delaunay graph that has mean free pathlike
line lengths. The recipes for the different types of processes
�ballistic, scattering, and combinations� can be extended
trivially to Rd. For example, for ballistic transport, we do not
choose the two most straightforward paths, but the d most
straightforward. The analysis concerning the conservation of
momentum in the Appendix is valid for every dimension
because it only assumes that the typical Voronoi cell is cy-
lindrically symmetric around every associated Delaunay
edge. This symmetry is a natural consequence of the motion
invariant property of the underlying Poisson point process
�see �6�, for more details�.

The only things that change from dimension to dimension
are the average number of lines emanating from a typical
point, or the number of walls of a typical Voronoi cell �six in
R2, 15.54 in R3, etc.�, and the geometrical constant 
�k ,d� in
the expressions for the kth-order moments of the Delaunay
line lengths, Eq. �8�. These are mere constants that one has to
incorporate when implementing the numerical method.

When using a regular grid, and the often associated finite
differencing or some nontrivial form of interpolation, it is
often very nontrivial to extend these operations to higher
dimensional space. Because we chose to use an adaptive ran-
dom lattice on which a �random� walk is performed, these
difficulties are resolved because both the lattice construction
techniques and the �random� walks are trivially defined in
every Rd.

F. Efficiency

It is straightforward to implement our method using one
or the other programming language. We have already done
this, using C��, and we will describe an application of this
so-called SIMPLEX package in the next section.

For now, we will describe the basic steps of the algorithm.
First of all, there have to be several preprocessing steps: �1�
create a point process matching Eq. �14�, in which the me-
dium density function can be an analytic function or some
data array from some other simulation; �2� construct the De-
launay triangulation; and �3� determine the properties of the
resultant lattice, namely the global interaction coefficients
	cj
, and the d most straightforward paths with respect to the
other lines. All these values are fixed during the rest of the
simulation. As an illustration, given an efficient tessellation
code, these preprocessing steps can be completed within
1 min wall-clock time on a simple desktop computer, for a
resolution of N=106 points.

Once the lattice and all its properties are known, the trans-
port can commence. If we define one iteration of the algo-
rithm as advancing particles from one point to the next, and
subsequently performing the interactions at each point, and
that for each point, we can make an estimate of the operation
count of the algorithm.

Each point can be dealt with independently of all the oth-
ers �cf. the Markov property of Monte Carlo methods�.
Given that the particles can be redistributed along other an-
gular directions at each point, each line has to treated sepa-

rately, but this is just a geometrical constant, given the di-
mension d, which does not scale with any resolution. Linear
multiplications as in Eq. �18� have to be performed for each
interaction j, and for each different particle species. The re-
distribution along the lines is just a pointer operation. Thus
the total operation count is of the form

Nops = NintNspecNp, �21�

in which Nint is the number of different interactions or non-
negligible cross sections � j, Nspec is the number of species,
and Np is just the resolution, or number of points. Thus just
focusing on the resolution, the operation count of this
method scales as O�N�.

It should be noted that this is independent of the number
of sources. As it turns out, most other transport methods
scale with the number of sources, by which it is extremely
time-consuming to do realistic calculations for a large num-
ber of inhomogeneously distributed sources. With this
method, this is now feasible, even on a simple desktop com-
puter, as we will point out in the next section.

We end this section by pointing out that our method bears
much resemblance to cellular automata methods, in the sense
that we have a global set of interaction coefficients, and a
global set of rules, applied locally. Each point is influenced
only by its neighbors �via the Markov criterion�. Thus, like
most cellular automata methods, our method can be parallel-
ized trivially. Of course, this would be much less trivial,
when nonlinear terms would be included.

G. Concluding

In this section, we have described how our method works.
We have shown how to construct a Lagrangian random lat-
tice, which mimics the medium properties in such a way that
locally all line lengths have the same distributional proper-
ties as the particles’ path lengths. As such, the method can
handle any geometry of the medium. The grid retains the
translational and rotational symmetries, inherent to most
physical problems, while at the same time adapting to the
medium properties, by which small mean free paths and rap-
idly fluctuating regions of the medium will not be under-
sampled. The resultant lattice is a direct representation of the
free path distribution space of the medium, by which the
stochastic character of the particles’ trajectories as in regular
Monte Carlo has been lifted to that of the grid itself, which
can be shown to sample space, and all angular directions
exactly when the resolution goes to infinity. Particles can be
easily transported along the lattice lines, with the interactions
taking place at each grid point, via an interaction coefficient
cj, which is directly proportional to the interaction cross sec-
tion. We have discussed how time-stepping is introduced,
depending on the linear transport problem we try to solve for,
and we have demonstrated how the often not very trivial
extension from R2 to Rd is trivial for our method. Moreover,
we have shown that the operation count of an implementa-
tion of the method is O�N�, which makes the method fast,
even when increasing resolution, or performing 3D calcula-
tions.
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IV. RADIATION TRANSPORT

As already briefly touched upon in the previous section,
we have implemented the method described in this paper in a
C�� package, we called SIMPLEX, named after the elemen-
tary constituent of the Delaunay lattice. For the grid con-
struction phase, we make use of the open source package
QHull �29�, which has been proven to be as fast as the
mathematically established limit O�N log N� for d�3 and
O�N�d/2�� for d
4.

The SIMPLEX package was specifically designed to solve
the equations of radiation transport. This radiative transfer
comes in a wide variety of forms, depending on the �astro-�
physical applications one is looking at. In the following, we
will concentrate on one particular example SIMPLEX has been
used for, and that is the propagation of an ionizing photon in
the early Universe.

A. Reionization

When the Universe had an age of about 400 000 years, its
expansion had caused it to cool down such that the hydrogen
recombination rate was higher than the ionization rate, by
which almost all protons and electrons recombined into neu-
tral hydrogen, making the Universe opaque to ionizing radia-
tion. It took quite some time before the initial density pertur-
bations gave rise to the first generation of stars �dubbed
population III� and quasars, which could end these Dark
Ages by producing the first new supply of ionizing photons
capable of reionizing the neutral hydrogen. This period,
which starts with the first new photons being produced, and
ends when all the hydrogen has been ionized, is believed to
have happened in the redshift span 6�z�20 �i.e.,
150 million–1 billion years after the Big Bang�, and has the
telltale name of Epoch of Reionization �EOR� �30–32�. This
part of cosmology has received considerable attention in re-
cent years, because we believe to be at the verge of observ-
ing signatures of the EOR itself, and understanding what
physically happens when reionization starts is absolutely
mandatory.

The initial density perturbations will enhance and enter a
stage of nonlinear growth, until, at the dawn of the EOR,
dark and gaseous matter is distributed along a very inhomo-
geneous filamentary structure, in which the density range
between high density filaments and low density voids can
span many orders of magnitude. The photon consumption is
dominated by the small scale structure, which one therefore
needs to resolve, but the resultant ionization bubbles can
have sizes which span sizes many magnitudes larger. It is
therefore of the utmost importance for methods trying to
model the EOR to have large enough simulation boxes in
combination with a resolution range large enough to be able
to resolve the small scale structure. This, together with the
inhomogeneous distribution of the matter, and the sources,
makes it an ideal situation where the Lagrangian aspect of
our method is aptly suited. Moreover, the large number of
sources involved slow other methods down severely, some-
times even beyond the reach of modern supercomputers. The
SIMPLEX method does not have this scaling property, and can
therefore be easily used, even in these extreme cases.

B. Setup

In this specific case, the medium density n�x�� is deter-
mined by the hydrogen density nH�x��, which is provided by
dark matter simulations which let the matter distribution
evolve from initial perturbations in the microwave back-
ground radiation up until the beginning of the EOR. Our
code translates this density distribution into a point distribu-
tion via Eq. �14�. The standalone hydrocode also provides us
with a catalog of where the first sources have formed, to-
gether with their intensities, conveniently expressed in terms
of number of ionizing photons emitted per second.

Each point is designated the same global interaction coef-
ficient cion, associated with the photoionization interaction,
but we include an extra factor �� �0,1�, which is a param-
eter that accounts for the feedback to the medium and keeps
track of what factor of the local medium is still neutral. This
neutral fraction is updated after each iteration, and, effec-
tively, lowers the interaction coefficient, i.e.,

ceff = �cion. �22�

An extra time-dependent effect that is needed to slow
down the resultant ionization fronts is hydrogen recombina-
tion, which can be locally incorporated by evaluating at each
point, at the end of each iteration,

ṅrec�x�� = 	B�1 − ��2nH
2 �x�� , �23�

in which ṅrec�x�� is the local recombination rate and 	B is the
recombination coefficient. This expression effectively ig-
nores diffuse, or scattered, radiation, which is thought to be
unimportant, although recent doubt has been shed on the
validity thereof �33�. Note that, if diffuse radiation turns out
to actually be a real important factor, the method described in
the previous section can trivially include it.

There are three things to note. First, the time-step �t per
iteration is determined by how much photons we emit per
iteration, and can be made arbitrarily small, in order to ac-
curately resolve effects like Eq. �23�. Second, we can build
in a limiter at each point, to make sure the velocity of the
ionization front will not exceed the speed of light. Third, in
this case of radiation transport, it is extremely important that
we have defined our method to be particle conserving, be-
cause precisely this ensures the ionization fronts to have the
correct speed.

C. Test case

There is one classical problem, which serves as an excel-
lent test case for all cosmological radiation transport code,
and that is the one of an ionization front expanding in an
initially neutral and uniform medium �34,35�. It so happens
that the exact analytical time-dependent solutions are known
for this problem.

Given that the medium has a homogeneous density nH,
and a central monochromatic source emits photons with en-

ergy h�=13.6 eV at a rate Ṅ�, the solutions for position rI�t�
and velocity vI�t� of the ionization front are

rI�t� = rS�1 − e−t/trec�1/3, �24�
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vI�t� =
rS

3trec

e−t/trec

�1 − e−t/trec�2/3 , �25�

where

trec =
1

	BnH
�26�

is the local recombination time and

rS = � 3Ṅ�

4�	BnH
2 �1/3

�27�

is the asymptotically reached Strömgren radius. These solu-
tions are valid for 3D space, but similar expressions exist for
general dimensional space.

Taking some typical values, Ṅ�=5�1048 s−1, nH
=10−3 cm−3, 	B=2.59�10−13 cm3 s−1, and a chosen simula-
tion time T=4trec, we can run SIMPLEX with these param-
eters, and determine what the position and velocity of the
ionization front is after each iteration. These results we can
immediately compare with the analytical solutions Eqs. �24�
and �25�, which has been done in Fig. 5.

It is straightforward to see that the results of the
SIMPLEX method agree very well with what is analytically
expected. A similarly good agreement can be seen when run-
ning the simulation for a medium with an r−1 or an r−2 den-
sity distribution, in which r is the distance to the central
source. Analytic solutions are available too for these cases
�36�.

Unfortunately, except for these rare cases, there are no
analytical solutions available for problems where the me-
dium and the source distribution is more inhomogeneous,
and this is precisely the regime in which cosmological radia-
tive transport methods have to perform well. To provide a
more quantitative basis on which one can validate the per-
formance of ones code, a cosmological radiative transfer
code comparison project was initiated last year in which 11
different codes, of which SIMPLEX was one, were compared.
The comparison consists of several test cases, one of which
was described in this section, but also several which do not
have an analytical solution. The results of this comparison
project are described in the forthcoming paper �37�.

D. Large scale simulation

As an illustration of what is possible with this method, we
give a more realistic example of the reionization of a box
which has as a size 100 Mpc comoving, in which a certain
inhomogeneous matter distribution, extracted from a dark
matter simulation with the code PMFAST �38�, has to be ion-
ized by a certain number of sources. A slice through the box
is depicted in Fig. 6, in which the logarithm of the density is
plotted. One can clearly see the filamentary structure and the
high contrast between low and high density regions.

We use 106 points to sample this medium distribution, and
via a friends-of-friends halo finding algorithm, we can des-
ignate several points as sources of ionizing photons. A total
of 2000 points are marked as sources and we assume that the
medium is static, and that there are no radiation hydrody-
namical feedback effects.

The result of the SIMPLEX reionization simulation of this
medium distribution is depicted in Fig. 7, in which a volume
rendering of the ionization structure of the medium is plotted
for six different points in time. White is the still neutral and
opaque hydrogen, and blue is what is already ionized, and
transparent. A cutout has been made to more clearly show the
inner structure of the simulated volume.

One can clearly see ionization bubbles, similar to the ones
described by Eqs. �24� and �25� being blown around each
source, which eventually overlap and fill the whole box. At
this point the EOR ends, and, again, the Universe is trans-
parent to ionizing radiation.

V. SUMMARY AND DISCUSSION

The simulation of the reionization of the large scale struc-
ture of the Universe, described in the previous section, runs
on a simple desktop computer, finishing within an hour.
Other cosmological radiative transfer methods would need
weeks, even months of supercomputer time to accomplish
the same task. This efficiency is due to the use of the La-

FIG. 5. Plots of the position �top� and velocity �bottom� as a
function of time for an ionization front in a homogeneous medium.
Crosses indicate the data produced by SIMPLEX, and the solid line
represents the analytic solutions Eqs. �24� and �25�.
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grangian lattice, which puts the usually limited resolution at
places where it is needed, while at the same time circumvent-
ing the severe problems associated with structured grids that
introduce unphysical conserved quantities. The resultant

method does not scale with the number of sources, which
appears to be one of the major bottlenecks of existing linear
transport methods. As briefly mentioned in Sec. III A 3, it is
possible to include nonlinear terms into our transport process
by discarding the static background medium and letting the
random lattice evolve according to the particle density. This
paper deals with linear problems only, which is why we re-
frain from discussing this possible extension here.

In a more general setting, we described in this paper a
method which is, in principle, suited to solve linear transport
equations in the abstract form of Eq. �1�. Hereto, we assume
that we can treat the advection and interaction parts dis-
jointly, or subsequently. The method is different in the sense
that it dispenses with the regular, structured grids altogether,
and introduces a very physical one.

Focusing on transport in which the only interaction terms
involve that between particles and a static medium, we ex-
tensively described how to create an adaptive grid, based on
a random point process, which locally retains important
physical symmetries, namely rotational and translational in-
variance. Moreover, the resultant lattice can be constructed
in such a way that all line lengths correlate linearly with all
statistical moments of the path lengths of the particles. As
such, the resultant lattice is a direct representation of the free
path space of the medium, which characterizes its interaction
properties. The exact value of the coupling constant � j of
each interaction is converted into a global interaction coeffi-

FIG. 6. �Color online� A slice through the simulation box, de-
picting the density distribution of neutral hydrogen on a logarithmic
scale. The simulation was done using PMFAST �38�. This is a direct
representation of the large scale structure of the Universe.

FIG. 7. �Color online� A volume rendering of the result of using the SIMPLEX method to transport the ionizing photons through the
medium distribution of the box depicted in Fig. 6. The results of six different points in time are plotted, in which the white corresponds to
the hydrogen that is still neutral �opaque�, and the blue to the already ionized hydrogen �transparent�.
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cient cj, which is a quantitative measure of how many mean
free paths fit into one lattice line length. After that, we
showed that, in the limit of an infinite number of points, the
lattice continuously samples all possible free paths and all
possible angular directions.

Henceforth, we described how to do the actual transport,
by solving for the advection part by moving the particles
along the lattice, or graph, and solving for the interaction
part, by evaluating Eq. �18� at each point. Redistribution of
the surviving particles can be chosen to conserve momen-
tum, and redistribution of scattered particles can be chosen to
be isotropic. Of course, it is trivial to incorporate intermedi-
ate cases, in which the scattering is anisotropic.

We showed the results of implementing the method as a
radiative transfer code SIMPLEX, with which we evaluated the
classical problem of an ionization front expanding in a ho-
mogeneous medium towards the asymptotically reached
Strömgren sphere. The results are in exact agreement with
the analytical solutions, which is also the case for r−1 and r−2

medium distributions. The method has been compared to
other codes using test cases for which there are no analytical
solutions. As an illustration of what the method is capable of,
we finished by using our SIMPLEX method to model the photo
ionization of the large scale structure of the Universe during
the Epoch of Reionization.

From an implementation point of view, the method is very
easy to use, given that Delaunay and Voronoi tessellation are
widely used in many areas of science, including computer
visualization, by which fast, robust, and open source codes
for performing the lattice construction are plentiful. Given
the lattice, there is not much more to implement, apart from
moving particles along a list of pointers. The expensive
finite-differencing, and such, associated with the use of struc-
tured grids, was dispensed with together with these lattices.
Moreover, because our interaction is implemented as a set of
global interaction coefficients, with global interaction rules,
each cell can be considered to be a cellular automaton. Thus
our method can be trivially parallelized.

We would like to conclude by noting that although in this
paper we focused on linear transport of photonlike particles
through a static medium, the method can be used much more
generally. The space in which the path lengths are defined
does need to be defined as a subset of phase space, but can be
much more abstract, and diverse. In every case, the method
will consist of constructing a Lagrangian random lattice, as a
direct representation of what the transported quantity would
encounter, when it is transported through that abstract space.
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APPENDIX: CONSERVATION OF MOMENTUM

The symmetry of each typical Voronoi cell �6� ensures
that momentum is conserved on average, given the ballistic
transport recipe in Sec. III C 1. What is more interesting,
though, from an implementation point of view, is the width
of the distribution around the original direction. That is, how
wide would an otherwise infinitely thin laser beam become
as a function of the distance to the source. For an exact
mathematical analysis hereof for the Poissonian random lat-
tice, we proceed as follows.

An example of a path of a particle performing a walk in
two dimensions is given in Fig. 8. The following analysis,
however, will be valid in d-dimensional space. Because of
cylindrical symmetry around the original direction x �the dis-
tribution function of the deflection angle is symmetric�, we
can parametrize the ith step of the particle’s walk by only
one angle �i, which is the angle between the ith Delaunay
edge and the original direction x. Thus the expectation value
of the total displacement Rn=r1+ ¯ +rn is

�Rn
 = �r1
 + ¯ + �rn
 = n�L
�cos �

x

�x�
= n�L
�

x

�x�
,

�A1�

in which �L
 is the average Delaunay line length, defined in
Eq. �8�, and

� = �
−�

�

h���cos �d� . �A2�

Here, we have used h��� as a certain symmetric function,
which characterizes the probability distribution of the angle
� and which, in most cases, cannot be evaluated analytically.
Several Monte Carlo experiments for this angle have been
done �6�.

The second-order expectation value can be evaluated as
follows:

�Rn
2
 = �r1

2
 + �r1 · r2
 + ¯ + �rn
2


= �L2
�n + n�n − 1��cos��i + � j�
� , �A3�

in which we may choose i and j randomly from the set
	1, . . . ,n
, as long as i� j, because the distribution function
h��� has the same form for each angle �i. Using the cosine
addition formula, we can reduce Eq. �A3� to

q
q

q

q
q

1
2

3

4
q n

5

x

FIG. 8. One possible path of particles performing a walk of n
steps on the Delaunay graph. The ith step is parametrized by an
angle �i, with respect to the original direction x.
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�Rn
2
 = „n + n�n − 1��2

…�L2
 . �A4�

Thus the variance of the displacement is

�Rn

2 = n�L2
�1 − �2� . �A5�

When h��������, then �=1, by which �Rn
= �L
nx / �x� and
�Rn

2 =0 as should be expected. The exact form of a distribu-
tion function like h��� can probably not be evaluated, even
for this well-studied Poisson case, but we can use a step
function as an approximation. Thus, given that in R2 the
average number of Delaunay lines meeting at a grid point is
6, we use as a step function h���=3/� on the domain �
� �−� /6 ,� /6�. This results in �=3/�, by which

�Rn
 =
3n�L


�

x

�x�
, �A6�

which is very close �difference of less than 5%� to the dis-
tance along a straight line, which would be n�L
. We can
always, of course, rescale the lengths so as to make sure that
the distance traversed equals the exact physical one.

More importantly, the variance in the displacement, in this
case, is

�Rn

2 =
�2 − 9

�2 �L2
n . �A7�

We know that the results of using a step-function as a distri-
bution function gives upper bounds on the values of Eqs.
�A1� and �A5�, because similar to the deflection angle distri-
bution function, the actual distribution function would peak

around �=0 and would decrease as ��� increases, so we ex-
pect the actual value of �Rn

2 to be smaller. Thus we can
simulate a straight line trajectory with this method, because
Rn�nx, but with a standard deviation that increases with �n.

A crucial aspect is the behavior of the standard deviation,
when the number of grid points N increases. Let us therefore
examine a line segment in the simulation domain of length L
���d, if we have a �0.0:1.0�d domain�. Because the point
distribution is homogeneous, we can conclude that the num-
ber of steps to cover the line is

n = �N1/d, �A8�

in which ��
�
3 
�1,2��d, which can be found by using the

upper bound Eq. �A6� and Eq. �8� for the length �L
 of a
Delaunay line. If we combine Eq. �A7� with Eq. �A8�, again
using Eq. �8�, we obtain

� � �L
�n � N−1/2d. �A9�

Thus we can conclude that the amount of widening of the
beam will go to zero when we increase the amount of grid
points N.

Even if we do not have a large amount of points to sup-
press the widening of the beam, we have another effect
which compensates for the widening. Namely, at each inter-
section the number of particles are split up into d parts. This
means that the particle number at points farther away from
the straight line trajectory is much less than at points close
by, simply because of the fact that more paths cross each
other at points close to the line.
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